
1

Module II

Perception networks – Learning rule – Training
and testing algorithm, AdaptiveLinear Neuron,
Back propagation Network – Architecture,
Training algorithm.

2

Perception networks
Theory

Perception networks come under single-layer feed-forward
networks and are also called simple perceptrons.

The key points to be noted in a perceptron network are:

1. The perceptron network consists of three units, namely, sensory unit
(input unit), associator unit (hiddenunit), response unit (output unit).

2. The sensory units are connected to associator units with fixed weights
having values 1, 0 or -l, which areassigned at random.

3. The binary activation function is used in sensory unit and associator
unit.

4. The response unit has an activation of l, 0 or -1. The binary step with
fixed threshold ɵis used asactivation for associator. The output signals
that are sent from the associator unit to the response unit areonly binary.

5. The output of the perceptron network is given by

wheref(yin) is activation function and is defined as

6. The perceptron learning rule is used in the weight updation between
the associator unit and the responseunit. For each training input, the net
will calculate the response and it will determine whether or not anerror
has occurred.

3

7. The error calculation is based on the comparison of values of targets
with those of the calculatedoutputs.

8. The weights on the connections from the units that send the nonzero
signal will get adjusted suitably.

9. The weights will be adjusted on the basis of the learningrule if an
error has occurred for a particulartraining pattern, i.e..,

If no error occurs, there is no weight updation and hence the
training process may be stopped. In the aboveequations, the target value
"t" is+ 1 or-1 and αis the learningrate.

Original Perception network

A Perceptionnetwork with its three units is shown in Figure below:

Sensory unit

4

A sensory unit can be a two-dimensional matrix of 400 photo
detectors upon which a lighted picture with geometric blackand white
pattern impinges. These detectors provide a binary(0) electricalsignal if
the input signal is found to exceed acertain value of threshold. Also,
these detectors are connected randomly with the associator unit.

Associator unit

The associator unit is found to consist of a set ofsubcircuits called
feature predicates. The feature predicates arehard-wired to detect the
specific feature of a pattern and are equivalent to the feature detectors.
For a particularfeature, each predicate is examined with a few or all of
the responses of the sensory unit. It can be found thatthe results from the
predicate units are also binary (0 or 1).

Response unit

The last unit, i.e. response unit, contains thepatternrecognizers or
perceptrons. The weights presentin the input layers are all fixed, while
the weights onthe response unit are trainable.

Learning rule

In case of the perceptron learning rule, the learning signal is the

difference between the desiredandactual response of a neuron. The
perceptron learning rule is explained as follows:

Consider a finite "n" number of input training vectors, with their
associated targetvalues x(n)and t{n), where "n" ranges from 1 toN. The
target is either+ 1 or -1. The output ''y" is obtained on thebasis of the net
input calculated and activation function being applied over the net input.

The weight updation in case of perceptron learning is as shown.

5

If y≠ tthen

else

Architecture
A simple perceptron network architecture is shown inFigure

below:

In Figure, there are ninput neurons, 1 output neuron and a bias.

The input-layer and outputlayerneurons are connected through a directed
communication link, which is associated with weights.

Thegoal of the perceptron net is to classify the inputpattern as a
member or not a member to a particularclass.

Flowchart for Training Process

The flowchart for the perceptron network training is shown in
Figure.

6

7

The flowchart depicted here presents the flow of the training
process.As depicted in the flowchart, first the basic initialization
required for the training process is performed.

The entire loop of the training process continues until the training
input pair is presented to the network. The training (weight updation) is
done on the basis of the comparison between the calculated and desired
output. The loop is terminated if there is no change in weight.

Training and testing algorithm

Perceptron Training Algorithm for Single Output Classes

The perceptron algorithm can be used for either binary or bipolar

input vectors, having bipolar targets,threshold being fixed and variable
bias.

 In the algorithm below, initiallythe inputs are assigned. Then the
net input is calculated. The output of the network is obtained by
applying the activation function over the calculated net input.

On performing comparison over the calculated and the desired
output, the weight updation process is carried out. The entire network is
trained based on thementioned stopping criterion.

The algorithm of a perceptron network is as follows:

Step 0:Initialize the weights and the bias. Also initialize the learning
rate α(O <α ≤1). For simplicity α is set to 1.

Step 1:Perform Steps 2-6 until the final stopping condition is false.

Step 2: Perform Steps 3-5 for each training pair indicated by s:t.

Step 3: The input layer containing input units is applied with identity
activation functions:

8

Step 4: Calculate the output of the network. To do so, first obtain the net

input:

where"n" is the number of input neurons in the input layer. Then
apply activations over the netinput calculated to obtain the output:

Step 5:Weight and bias adjustment: Compare the value of the actual
(calculated) output and desired(target) output.

Step 6: Train the network until there is no weight change. This is the
stopping condition for the network.If this condition is not met, then start
again from Step 2.

Perceptron Training Algorithm for Multiple Output Classes

For multiple output classes, the perceptron training algorithm is as
follows:
Step 0:Initialize the weights, biases and learning rate suitably.
Step 1: Check for stopping condition; if it is false, perform Steps 2-6.
Step 2: Perform Steps 3--5 for each bipolar or binary training vector pair
s:t.
Step 3: Set activation (identity) of each input unit i= 1 ton:

9

xi=si

Step 4:Calculate output response of each output unit j=1 to m; First the
net input is calculated as:

Then activations are applied over the net input to calculate the output
response:

Step 5: Make adjustment in weights and bias for j =1 to m and i= 1to n.

Step 6: Test for the stopping condition, i.e., if there is no change in
weights then stop the training process, else start again from Step 2.

The above algorithm issuited for the architecture shown in Figure

below.

10

Perceptron Network Testing Algorithm

The testing algorithm is asfollows:
Step 0: The initialweights to be used here are taken from the training
algorithms.
Step 1: For each input vector X to be classified, perform Steps 2-3.
Step 2: Set activations of the input unit.
Step 3: Obtain the response of output unit.

11

 Adaptive Linear Neuron (Adaline)

Theory
The units with linear activation function are called linear units. A

network with a single linear unit is calledan Adaline (adaptive linear
neuron). That is, in an Adaline, the input-output relationship is linear.

Adalineusesbipolar activation for its input signals and its target
output. The weights between the input and theoutput are adjustable. The
bias in Adaline acts like an adjustable weight, whose connection is from
a unitwith activations being always 1. Adaline is a net which has only
one output unit. The Adaline network maybe trained using delta rule.

The delta rule may also be called as least mean square (LMS) rule
or Widrow-Hoffrule. This learning rule is found to minimize the mean-
squared error between the activation and the targetvalue.
Delta Rule for Single Output Unit

The Widrow-Hoff rule is very similar to perceptron learning rule.
The delta rule updates the weights between the connections so as
tominimize the difference between the net input to the output unit and
the target value. The major aim is tominimize the error over all training
patterns. This is done by reducing the error for each pattern, one at a
time.
The delta rule for adjusting the weight of ith pattern {i = 1 to n) is

where

is the weight change
α the learning rate
xthe vector of activation of input unit
yinthe net inputto output unit

The delta rule in case of several output units foradjusting the
weight from ithinput unit to the jth output unit (for each pattern) is

12

Architecture
Adaline is a single-unitneuron, which receives input from several

units and also from oneunit called bias. An Adaline model is shown in
Figure below:

The basic Adaline model consists of trainableweights.
 Inputs are either of the two values (+ 1 or -1) and the weights have

signs (positive or negative).
Initially, random weights are assigned.
 The net input calculated is applied to a quantizer transfer

functionthat restores the output to +1 or -1. The Adaline model
compares the actualoutput with the target output and on the basis of the
training algorithm, the weights are adjusted.

Flowchart for Training Process

The flowchart for the training process is shown in Figure
below:This gives a pictorial representation of thenetwork training.

The conditions necessary for weight adjustments have to be
checked carefully. The weightsand other required parameters are
initialized. Then the net input is calculated, output is obtained and
comparedwith the desired output for calculation of error. On the basis of
the error Factor, weights are adjusted.

13

14

Training Algorithm
The Adaline network training algorithm is as follows:

Step 0: Weights and bias are set to some random values but not zero. Set
the learning rate parameter α.
Step 1: Perform Steps 2-6 when stopping condition is false.
Step 2: Perform Steps 3-5 for each bipolar training pair s: t.
Step 3: Set activations for input units i= 1 to n.

Step 4: Calculate the net input to the output unit.

Step 5: Update the weights and bias fori= 1ton:

Step 6: If the highest weight change that occurred during training is
smaller than a specified tolerance then stop the training process, else
continue. This is the rest for stopping condition of anetwork.

The range of learning rate can be between 0.1 and 1.0.

Testing Algorithm

It is essential to perform the resting of a network that has been
trained. When training is completed, theAdaline can be used to classify
input patterns.

 A step function is used to test the performance of the network.The
resting procedure for the Adaline network is as follows:

Step 0: Initialize the weights.
Step 1: Perform Steps 2-4 for each bipolar input vector x.
Step 2: Set the activations of the input units to x.
Step 3: Calculate the net input to the output unit:

15

Step 4: Apply the activation function over the net input calculated:

Back propagation Network
Theory

The backpropagation learning algorithm is one of the most
important developments in neural networks. The networks
associatedwith back-propagation learning algorithm are called back
propagation networks(BPNs).

For a given setof training input-output pair, this algorithm provides
a procedure for changing the weights in a BPN toclassify the given input
patterns correctly.

The basic concept for this weight update algorithm is simply
thegradient-descent method. This is amethod where the error is
propagated back to the hidden unit.

The aim of the neural networkistotrain thenet to achieve a balance
between the net's ability to respond and its ability to give
reasonableresponses to the inputthat is similar but not identical to the
one that is used in training.

The back-propagation algorithm is different from other networks in
respect to the process by which weights are calculated during the
learning period of the network.

The general difficulty with the multilayerperceptrons is calculating
the weights of the hidden layers in an efficient way that would result in a
very smallor zero output error.

When the hidden layers are increased the network training
becomes more complex. Toupdate weights, the error must be calculated.
The error, which is the difference between the actual (calculated)and the
desired (target) output, is easily measured at the output layer.

The training of the BPN is done in three stages:
 the feed-forward of the input training pattern
 thecalculation and back-propagation of the error
 updation of weights.

16

Architecture

A back-propagation neural network is a multilayer, feed forward
neural network consisting of an input layer,a hidden layer and an
output layer.

 The neurons present in the hidden and output layers have biases,
whichare the connections from the units whose activation is always 1.
The bias terms also acts as weights.

The Figure below shows the architecture of a BPN, depicting only
the direction of information flow for the feed-forward phase.During the
back propagation phase of learning signals are sent in the reverse
direction.

The inputs sent to the BPN and the output obtained from the net
could be either binary (0, 1) orbipolar (-1, + 1). The activation
function could be any function which increases monotonically and is
alsodifferentiable.

17

Training algorithm

Flowchart for Training Process

The flowchart for the training process using a BPN is shown in Figure

below. The terminologies used in theflowchart and in the training
algorithm are as follows:

andthe output is

yk= output unit k. The net input toykis

andthe output is

18

19

20

Training Algorithm

Step 0: Initialize weights and learning rate.
Step 1: Perform Steps 2-9 when stopping condition is false.
Step 2: Perform Steps 3-8 for training pair.

Feed-Forward Phase(Phase: I)

Step 3: Each input unit receives input signal x; and sends it to the
hidden unit (i = l to n).

Step 4: Each hidden unit zj(j = 1 top) sums its Weighted input signals to
calculate net input:

Calculate output of the hidden unit by applying its activation functions
over zinj

and send the output signal from the hidden unit to the input of output

layer units.

Step 5: For each output unit yk(k = 1 to m),calculate the net input:

and apply the activation function to compute output signal

Back propagation of error (Phase ll)

Step 6:Each output unityk(k 1 to m) receives a target pattern
corresponding to the input trainingpattern and computes
theerrorcorrection term:

21

On the basis of the calculated errorcorrection term, update the change in
weights and bias:

Step 7: Each hidden unit (zj,j= 1 top) sums its delta inputs from the
output units:

On the basis of the calculated δj, update the changein weights and

bias:

Weight and bias updation (PhaseIII):

Step 8: Each output unit (yk, k = 1 tom) updates the bias and weights:

Each hidden unit (zj,j= 1 top) updates its bias and weights:

Step 9: Check for the stopping condition. The stopping condition may
be certain number of epochsreached or when the actual output equals the
target output.
 The above algorithm uses the incremental approach for updation of
weights, i.e., the weights are beingchanged immediately after a training
pattern is presented. There is another way of training called batch-mode
training, where the weights are changed only after all the training
patterns are presented. The effectiveness of two approaches depends on
the problem, but batch-mode training requires additional local storage

22

for eachconnection to maintain the immediate weight changes. When a
BPN is used as a classifier, it is equivalent tothe optimal Bayesian
discriminant function for asymptotically large sets of statistically
independent trainingpatterns.

