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Perception networks 
Theory 

Perception networks come under single-layer feed-forward 
networks and are also called simple perceptrons. 

The key points to be noted in a perceptron network are: 
 
1. The perceptron network consists of three units, namely, sensory unit 
(input unit), associator unit (hiddenunit), response unit (output unit). 
 
2. The sensory units are connected to associator units with fixed weights 
having values 1, 0 or -l, which areassigned at random.  
 
3. The binary activation function is used in sensory unit and associator 
unit. 
 
4. The response unit has an activation of l, 0 or -1. The binary step with 
fixed threshold ɵis used asactivation for associator. The output signals 
that are sent from the associator unit to the response unit areonly binary.  
 
5. The output of the perceptron network is given by 

 
wheref(yin) is activation function and is defined as 

 

 
 

6. The perceptron learning rule is used in the weight updation between 
the associator unit and the responseunit. For each training input, the net 
will calculate the response and it will determine whether or not anerror 
has occurred. 
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7. The error calculation is based on the comparison of values of targets 
with those of the calculatedoutputs. 
 
8. The weights on the connections from the units that send the nonzero 
signal will get adjusted suitably. 
 
9. The weights will be adjusted on the basis of the learningrule if an 
error has occurred for a particulartraining pattern, i.e.., 
 

  

If no error occurs, there is no weight updation and hence the 
training process may be stopped. In the aboveequations, the target value 
"t" is+ 1 or-1 and αis the learningrate. 
 
Original Perception network 

A Perceptionnetwork with its three units is shown in Figure below: 

 
 

Sensory unit 
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A sensory unit can be a two-dimensional matrix of 400 photo 
detectors upon which a lighted picture with geometric blackand white 
pattern impinges. These detectors provide a binary(0) electricalsignal if 
the input signal is found to exceed acertain value of threshold. Also, 
these detectors are connected randomly with the associator unit. 
 
Associator unit 

The associator unit is found to consist of a set ofsubcircuits called 
feature predicates. The feature predicates arehard-wired to detect the 
specific feature of a pattern and are equivalent to the feature detectors. 
For a particularfeature, each predicate is examined with a few or all of 
the responses of the sensory unit. It can be found thatthe results from the 
predicate units are also binary (0 or 1).  
 
Response unit 

The last unit, i.e. response unit, contains thepatternrecognizers or 
perceptrons. The weights presentin the input layers are all fixed, while 
the weights onthe response unit are trainable. 

 

Learning rule 
 
In case of the perceptron learning rule, the learning signal is the 

difference between the desiredandactual response of a neuron. The 
perceptron learning rule is explained as follows: 

Consider a finite "n" number of input training vectors, with their 
associated targetvalues x(n)and t{n), where "n" ranges from 1 toN. The 
target is either+ 1 or -1. The output ''y" is obtained on thebasis of the net 
input calculated and activation function being applied over the net input. 

 

The weight updation in case of perceptron learning is as shown. 
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If y≠ tthen 

 

else 

 

Architecture 
A simple perceptron network architecture is shown inFigure 

below: 

 
 
In Figure, there are ninput neurons, 1 output neuron and a bias. 

The input-layer and outputlayerneurons are connected through a directed 
communication link, which is associated with weights.  

Thegoal of the perceptron net is to classify the inputpattern as a 
member or not a member to a particularclass. 
 
Flowchart for Training Process 

The flowchart for the perceptron network training is shown in 
Figure. 
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The flowchart depicted here presents the flow of the training 
process.As depicted in the flowchart, first the basic initialization 
required for the training process is performed. 

The entire loop of the training process continues until the training 
input pair is presented to the network. The training (weight updation) is 
done on the basis of the comparison between the calculated and desired 
output. The loop is terminated if there is no change in weight. 
 

Training and testing algorithm 
 
Perceptron Training Algorithm for Single Output Classes 

 
The perceptron algorithm can be used for either binary or bipolar 

input vectors, having bipolar targets,threshold being fixed and variable 
bias. 

 In the algorithm below, initiallythe inputs are assigned. Then the 
net input is calculated. The output of the network is obtained by 
applying the activation function over the calculated net input.  

On performing comparison over the calculated and the desired 
output, the weight updation process is carried out. The entire network is 
trained based on thementioned stopping criterion.  

 
The algorithm of a perceptron network is as follows: 

 
Step 0:Initialize the weights and the bias. Also initialize the learning 
rate α(O <α ≤1). For simplicity α is set to 1. 
 
Step 1:Perform Steps 2-6 until the final stopping condition is false. 
 
Step 2: Perform Steps 3-5 for each training pair indicated by s:t. 
 

Step 3: The input layer containing input units is applied with identity 
activation functions: 
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Step 4: Calculate the output of the network. To do so, first obtain the net 

input: 

 

where"n" is the number of input neurons in the input layer. Then 
apply activations over the netinput calculated to obtain the output: 

  

Step 5:Weight and bias adjustment: Compare the value of the actual 
(calculated) output and desired(target) output. 
 

 

Step 6: Train the network until there is no weight change. This is the 
stopping condition for the network.If this condition is not met, then start 
again from Step 2. 
 
Perceptron Training Algorithm for Multiple Output Classes 

For multiple output classes, the perceptron training algorithm is as 
follows: 
Step 0:Initialize the weights, biases and learning rate suitably.  
Step 1: Check for stopping condition; if it is false, perform Steps 2-6. 
Step 2: Perform Steps 3--5 for each bipolar or binary training vector pair 
s:t. 
Step 3: Set activation (identity) of each input unit i= 1 ton: 
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xi=si 

Step 4:Calculate output response of each output unit j=1 to m; First the 
net input is calculated as: 

 
Then activations are applied over the net input to calculate the output 
response: 

 
 
Step 5: Make adjustment in weights and bias for j =1 to m and i= 1to n. 

 
 
Step 6: Test for the stopping condition, i.e., if there is no change in 
weights then stop the training process, else start again from Step 2. 

 
The above algorithm issuited for the architecture shown in Figure 

below. 
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Perceptron Network Testing Algorithm 

The testing algorithm is asfollows: 
Step 0: The initialweights to be used here are taken from the training 
algorithms. 
Step 1: For each input vector X to be classified, perform Steps 2-3. 
Step 2: Set activations of the input unit. 
Step 3: Obtain the response of output unit. 
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 Adaptive Linear Neuron (Adaline) 

Theory  
The units with linear activation function are called linear units. A 

network with a single linear unit is calledan Adaline (adaptive linear 
neuron). That is, in an Adaline, the input-output relationship is linear.  

Adalineusesbipolar activation for its input signals and its target 
output. The weights between the input and theoutput are adjustable. The 
bias in Adaline acts like an adjustable weight, whose connection is from 
a unitwith activations being always 1. Adaline is a net which has only 
one output unit. The Adaline network maybe trained using delta rule.  

The delta rule may also be called as least mean square (LMS) rule 
or Widrow-Hoffrule. This learning rule is found to minimize the mean-
squared error between the activation and the targetvalue. 
Delta Rule for Single Output Unit 

The Widrow-Hoff rule is very similar to perceptron learning rule. 
The delta rule updates the weights between the connections so as 
tominimize the difference between the net input to the output unit and 
the target value. The major aim is tominimize the error over all training 
patterns. This is done by reducing the error for each pattern, one at a 
time. 
The delta rule for adjusting the weight of ith pattern {i = 1 to n) is 

 

where 

is the weight change 
α      the learning rate 
xthe vector of activation of input unit 
yinthe net inputto output unit 
 

The delta rule in case of several output units foradjusting the 
weight from ithinput unit to the jth output unit (for each pattern) is 
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Architecture 
Adaline is a single-unitneuron, which receives input from several 

units and also from oneunit called bias. An Adaline model is shown in 
Figure below: 

 
 
The basic Adaline model consists of trainableweights. 
 Inputs are either of the two values (+ 1 or -1) and the weights have 

signs (positive or negative). 
Initially, random weights are assigned. 
 The net input calculated is applied to a quantizer transfer 

functionthat restores the output to +1 or -1. The Adaline model 
compares the actualoutput with the target output and on the basis of the 
training algorithm, the weights are adjusted. 
 
Flowchart for Training Process 

The flowchart for the training process is shown in Figure 
below:This gives a pictorial representation of thenetwork training.  

The conditions necessary for weight adjustments have to be 
checked carefully. The weightsand other required parameters are 
initialized. Then the net input is calculated, output is obtained and 
comparedwith the desired output for calculation of error. On the basis of 
the error Factor, weights are adjusted. 
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Training Algorithm 
The Adaline network training algorithm is as follows: 
 
Step 0: Weights and bias are set to some random values but not zero. Set 
the learning rate parameter α. 
Step 1: Perform Steps 2-6 when stopping condition is false. 
Step 2: Perform Steps 3-5 for each bipolar training pair s: t. 
Step 3: Set activations for input units i= 1 to n. 

 
Step 4: Calculate the net input to the output unit. 

 
Step 5: Update the weights and bias fori= 1ton: 

 
Step 6: If the highest weight change that occurred during training is 
smaller than a specified tolerance then stop the training process, else 
continue. This is the rest for stopping condition of anetwork. 
 
The range of learning rate can be between 0.1 and 1.0. 
 
Testing Algorithm 

It is essential to perform the resting of a network that has been 
trained. When training is completed, theAdaline can be used to classify 
input patterns. 

 A step function is used to test the performance of the network.The 
resting procedure for the Adaline network is as follows: 

 
Step 0: Initialize the weights.  
Step 1: Perform Steps 2-4 for each bipolar input vector x. 
Step 2: Set the activations of the input units to x. 
Step 3: Calculate the net input to the output unit: 
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Step 4: Apply the activation function over the net input calculated: 

 
 

Back propagation Network 
Theory 

The backpropagation learning algorithm is one of the most 
important developments in neural networks. The networks 
associatedwith back-propagation learning algorithm are called back 
propagation networks(BPNs).  

For a given setof training input-output pair, this algorithm provides 
a procedure for changing the weights in a BPN toclassify the given input 
patterns correctly.  

The basic concept for this weight update algorithm is simply 
thegradient-descent method. This is amethod where the error is 
propagated back to the hidden unit. 

The aim of the neural networkistotrain thenet to achieve a balance 
between the net's ability to respond and its ability to give 
reasonableresponses to the inputthat is similar but not identical to the 
one that is used in training. 

The back-propagation algorithm is different from other networks in 
respect to the process by which weights are calculated during the 
learning period of the network.  

The general difficulty with the multilayerperceptrons is calculating 
the weights of the hidden layers in an efficient way that would result in a 
very smallor zero output error.  

When the hidden layers are increased the network training 
becomes more complex. Toupdate weights, the error must be calculated. 
The error, which is the difference between the actual (calculated)and the 
desired (target) output, is easily measured at the output layer.  

The training of the BPN is done in three stages: 
 the feed-forward of the input training pattern 
 thecalculation and back-propagation of the error 
 updation of weights.  
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Architecture 
 

A back-propagation neural network is a multilayer, feed forward 
neural network consisting of an input layer,a hidden layer and an 
output layer. 

 The neurons present in the hidden and output layers have biases, 
whichare the connections from the units whose activation is always 1. 
The bias terms also acts as weights.  

The Figure below shows the architecture of a BPN, depicting only 
the direction of information flow for the feed-forward phase.During the 
back propagation phase of learning signals are sent in the reverse 
direction. 

The inputs sent to the BPN and the output obtained from the net 
could be either binary (0, 1) orbipolar ( -1, + 1). The activation 
function could be any function which increases monotonically and is 
alsodifferentiable. 

 
 
 



17 
 

Training algorithm 
 

Flowchart for Training Process 
 
The flowchart for the training process using a BPN is shown in Figure 

below. The terminologies used in theflowchart and in the training 
algorithm are as follows: 

 

 
 

 

andthe output is 

 

yk= output unit k. The net input toykis 

 

andthe output is 
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Training Algorithm 
 
Step 0: Initialize weights and learning rate. 
Step 1: Perform Steps 2-9 when stopping condition is false. 
Step 2: Perform Steps 3-8 for training pair. 

Feed-Forward Phase(Phase: I) 
 
Step 3: Each input unit receives input signal x; and sends it to the 
hidden unit (i = l to n). 
 
Step 4: Each hidden unit zj(j = 1 top) sums its Weighted input signals to 
calculate net input: 

 

Calculate output of the hidden unit by applying its activation functions 
over zinj 

 

and send the output signal from the hidden unit to the input of output 

layer units. 

Step 5: For each output unit yk(k = 1 to m),calculate the net input: 

 

and apply the activation function to compute output signal 

 

Back propagation of error (Phase ll) 

Step 6:Each output unityk(k 1 to m) receives a target pattern 
corresponding to the input trainingpattern and computes 
theerrorcorrection term: 
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On the basis of the calculated errorcorrection term, update the change in 
weights and bias: 

 

 
Step 7: Each hidden unit (zj,j= 1 top) sums its delta inputs from the 
output units: 

 
On the basis of the calculated δj, update the changein weights and 

bias: 

 

Weight and bias updation (PhaseIII): 
 

Step 8: Each output unit (yk, k = 1 tom) updates the bias and weights: 

 

Each hidden unit (zj,j= 1 top) updates its bias and weights: 

 

Step 9: Check for the stopping condition. The stopping condition may 
be certain number of epochsreached or when the actual output equals the 
target output. 
 The above algorithm uses the incremental approach for updation of 
weights, i.e., the weights are beingchanged immediately after a training 
pattern is presented. There is another way of training called batch-mode 
training, where the weights are changed only after all the training 
patterns are presented. The effectiveness of two approaches depends on 
the problem, but batch-mode training requires additional local storage 
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for eachconnection to maintain the immediate weight changes. When a 
BPN is used as a classifier, it is equivalent tothe optimal Bayesian 
discriminant function for asymptotically large sets of statistically 
independent trainingpatterns. 
 


